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Although the distance-based approach introduced in the previous lesson
provides a powerful mathematical framework for shape reconstruction, it
is not always possible, nor desirable, to fully reconstruct the approximated
shapes from data. This chapter focuses on weaker topological invariants,
homology, Betti numbers and persistent homology, that turn out to be easier
to infer and that are widely used in applied topology and topological data
analysis. The introduction of homology is restricted to the minimum that is
necessary to understand the basic ideas of homology inference and persistent
homology and its usage in topological data analysis.

1. Simplicial Complexes

Geometric shapes like curves, surfaces or their generalization in higher
dimensions are “continuous” mathematical objects that cannot be directly
encoded as a finite discrete structure usable by computers or computing
devices. It is thus necessary to find representations of these shapes that are
rich enough to capture their geometric structure and to comply with the
constraints inherent to the discrete and finite nature of implementable data
structures. On another side, when the only available data are point clouds
sampled around unknown shapes, it is necessary to be able to build some
continuous space on top of the data that faithfully encode the topology and
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the geometry of the underlying shape. Simplicial complexes offer a classical
and flexible solution to overcome these difficulties.

1.1. Geometric Simplicial Complexes. The points of a finite set P =
{p0, p1, . . . , pk} in Rd are said to be affinely independent if they are not
contained in any affine subspace of dimension less than k.

Definition 1.1 (Simplex). Given a set P = {p0, p1, . . . , pk} ⊂ Rd of k + 1
affinely independent points, the k-dimensional simplex σ, or k-simplex for
short, spanned by P is the set of convex combinations∑k

i=0 λipi, with
∑k

i=0 λi = 1 and λi ⩾ 0.

The points p0, p1, . . . , pk are called the vertices of σ.

Remark 1.2. (i) Notice that σ is the convex hull of the points P , i.e. the
smallest convex subset of Rd containing p0, p1, . . . , pk.

(ii) A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron.

(iii) The faces of the simplex σ whose vertex set is P are the simplices
spanned by the subsets of P.

Definition 1.3 (Simplicial complex). A (finite) simplicial complex K in Rd

is a (finite) collection of simplices such that:

(i) any face of a simplex of K is a simplex of K,
(ii) the intersection of any two simplices of K is either empty or a common

face of both.

All the simplicial complexes considered here are finite. The simplices of
K are called the faces of K. The dimension of K is the highest dimension
of its simplices. A complex of dimension k is also called a k-complex. A
subset of the simplices of K which is itself a simplicial complex is called a
subcomplex of K.

(a) An example of a simplicial com-
plex.

(b) A union of simplices which is not
a simplicial complex.

Figure 1. To be, or not to be a simplicial complex.

Remark 1.4. For a simplicial complex K in Rd , its geometric realization
|K| ⊂ Rd is the union of the simplices of K. The topology of K is the
topology induced on |K| by the standard topology in Rd. When there is no
risk of confusion, we do not clearly make the distinction between a complex
in Rd and its geometric realization.
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1.2. Abstract Simplicial Complexes. Notice that when its vertex set is
known, a simplicial complex in Rd is fully and combinatorialy characterized
by the list of its simplices. This leads to the following notion of abstract
simplicial complex.

Definition 1.5. Let V = {v1, . . . , vn} be a finite set. An abstract simplicial

complex K̃ with vertex set V is a set of finite subsets of V satisfying the two
conditions :

(i) The elements of V belong to K̃.
(ii) If τ ∈ K̃ and σ ⊂ τ , then σ ∈ K̃.
The elements of K̃ are called the simplices or the faces of K̃. If σ ∈ K̃ has
precisely k + 1 elements, the dimension of σ is k and we say that σ is a
k-simplex. The dimension of K̃ is the maximal dimension of its simplices.

Any simplicial complex K in Rd naturally determines an abstract simpli-
cial complex K̃, called the vertex scheme of K: K and K̃ have the same set
of vertices and the simplices of K̃ are the sets of vertices of the simplices of
K. Conversely, if an abstract complex K̃ is the vertex scheme of a complex
K in Rd , then K is called a geometric realization of K̃. Notice that any
finite abstract simplicial complex K̃ has a geometric realization in an Eu-
clidean space in the following way. Let {v1, v2, . . . , vn} be the vertex set of

K̃ where n is the number of vertices of K̃, and let σ ⊂ Rn be the simplex
spanned by {e1, e2, . . . , en}, where for any i ∈ {1, . . . , n}, ei is the vector
whose coordinates are all 0 except the ith one which is equal to 1. Then
K is the subcomplex of σ defined by [ei0 , . . . , eik ] is a k-simplex of K if and
only if [v1, v2, . . . , vn] is a simplex of K. It can also be proven that any finite
abstract simplicial complex of dimension d can be realized as a simplicial
complex in R2d+1

Definition 1.6 (Isomorphism of abstract simplicial complexes). Two ab-

stract simplicial complexes K̃, K̃′ with vertex sets V and V ′ are isomorphic
if there exists a bijection φ : V → V ′ such that {v0, . . . , vk} ∈ K̃ if and only

if {φ(v0), . . . , φ(vk)} ∈ K̃′

The relation of isomorphism between two abstract simplicial complexes
induces homeomorphism between their geometric realizations.

Proposition 1.7. If two simplicial complexes K,K′ are the geometric re-
alizations of two isomorphic abstract simplicial complexes K̃, K̃′ , then |K|
and |K′| are homeomorphic topological spaces. In particular, the underlying
spaces of any two geometric realizations of an abstract simplicial complex
are homeomorphic.

Remark 1.8 (About terminology). As the underlying spaces of all geo-
metric realizations of an abstract simplicial complex are homeomorphic to
each other, it is usual to relate the topological properties of these under-
lying spaces to the complex itself. For example, when one claims that an
abstract simplicial complex K is homeomorphic or homotopy equivalent to a
topological space X, it is meant that the underlying space of any geometric
realization of K is homeomorphic or homotopy equivalent to X.
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Exercise 1.9. Give examples of simplicial complexes in Rd that are home-
omorphic to a ball, a sphere, and a torus.

1.3. Nerve. As noticed in the previous section, simplicial complexes can
be seen at the same time as topological spaces and as purely combinatorial
objects.

Definition 1.10 (Cover). An open cover of a topological space X is a
collection U = (Ui)i∈I of open subsets Ui ⊂ X, i ∈ I where I is a set, such
that X = ∪i∈IUi. Similarly, a closed cover of X is a collection of closed sets
whose union is X.

Definition 1.11 (Nerve of a cover). Given a cover U = (Ui)i∈I of a topolog-
ical space X, we associate an abstract simplicial complex Nerve(U) whose
vertex set is U and such that

σ = [Ui0 , . . . , Uik ] ∈ Nerve(U) if and only if ∩kj=0Uij ̸= ∅.
Such a simplicial complex is called the nerve of the cover U .

(a) An open cover in R2. (b) A nerve is a simplicial complex.

Figure 2. A cover and its associated nerve.

When all the sets Ui are open and all their finite intersections are con-
tractible, i.e. are homotopy equivalent to a point, the Nerve Theorem relates
the topology of X and Nerve(U).
Theorem 1.12 (Nerve Theorem). Let U = (Ui)i∈I be a finite open cover
of a subset X of Rd such that any intersection of the Ui’s is either empty
or contractible (in particular, each Ui must be contractible). Then X and
Nerve(U) are homotopy equivalent.

Proof. See [Hat02, Section 4.G]. □

Remark 1.13 (About the assumptions of Theorem 1.12). – Contractibility
of the intersections of the Ui’s is necessary. For instance, take U = {U1},
where U1 is a circle. Then Nerve(U) is a point, while X = U1 is not
contractible.

– Openness (or similar condition) is also necessary, as shown for the example
of U = {(−1, 0], (0, 1)}, which yields a nerve Nerve(U) that consists in two
disconnected points, while X = (−1, 1) is connected.

– The nerve theorem also holds for closed covers under a slightly more re-
strictive assumption on X. The following version is general enough for
our purpose.

Theorem 1.14 (Nerve Theorem for Convex Covers). Let X ⊂ Rd be a finite
union of closed convex sets F = (Fi)i∈I in Rd. Then X and Nerve(F) are
homotopy equivalent.
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A cover satisfying the assumptions of the Nerve Theorem is sometimes
called a good cover. The Nerve Theorem is of fundamental importance in
computational topology and geometric inference: it provides a way to encode
the homotopy type of continuous topological spaceX by a simplicial complex
describing the intersection pattern of a good cover. In particular, when X
is a (finite) union of (closed or open) balls in Rd, it is homotopy equivalent
to the nerve of this union of balls.

1.4. Filtrations of Simplicial Complexes. Simplicial complexes often
come with a specific ordering of their simplices that plays a fundamental
role in geometry inference.

Definition 1.15 (Filtration). A filtration of a finite simplicial complex K
is a nested sequence of sub-complexes ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K such
that Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Equivalently, a filtration of K can be seen as an ordering of the simplices
such that for any i ⩾ 0, the collection of the first i simplices is a simplicial
complex. To ensure this later condition, it is sufficient to know that every
simplex σi appears in the filtration after all its faces.

As a filtration of K is just an ordering of the simplices, in some cases,
it might be more natural to index the simplices by an increasing sequence
(αi)1⩽i⩽m of real numbers: ∅ = Kα0 ⊂ Kα1 ⊂ . . . ⊂ Kαm = K In this case, it
is often convenient to extend the filtration to the whole set of real numbers
by defining Kα = Kαi for α ∈ [αi, αi+1), Kα = ∅ for α < α0 and Kα = K for
α ⩾ αm.

For example, when a function is defined on the vertices of K, on can define
a sublevel set filtration in the following way.

Definition 1.16 (Filtration induced by a function). Let K be a simplicial
complex and let f be a real valued function defined on the vertices of K.
For any simplex σ = {v0, . . . , vk} one defines f(σ) by

f(σ) = max
0⩽i⩽k

f(vi).

Ordering the simplices of K according to the values of each simplex defines
a filtration of K. Note that different simplices can have the same value. In
this case, they are ordered according to increasing dimension and simplices
of the same dimension with same value can be ordered arbitrarily.

The filtration induced by f is the filtration by the sublevel sets f−1((−∞, t])
of f .

1.5. Vietoris-Rips and Čech Filtrations. As we will see later in the
course, filtrations are often built on top of finite sets of points to reveal the
underlying topological structure of data. We let P ⊂ Rd be a (finite) set of
points.

Definition 1.17 (Čech). Given α > 0, the Čech complex with vertex set P
and parameter α is the nerve Čech(P, α) of the unions of balls centered on
P with radius α. The simplices of Čech(P, α) are characterized by

[x0, . . . , xk] ∈ Čech(P, α) ⇔ ∩ki=0B(xi, α) ̸= ∅.
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α

Figure 3. The Čech (left) and Vietoris-Rips (right) com-
plexes built on top of a finite set of points in R2. Note that
they both contains a 3-simplex and are thus not embedded
in R2.

As α goes from 0 to∞, the nested sequence of complexes Čech(P, α) defines
the Čech complex filtration.

Given a k-dimensional face σ of the simplex of dimension |P| − 1, the
smallest α such that σ ∈ Čech(P, α) is the radius of the smallest ball en-
closing the vertices of α.

As a consequence, the k-dimensional skeleton of the Čech filtration can
be computed by computing the O(|P|k) minimum enclosing balls of all the
subsets of at most k points of P. Although the computation of the minimum
ball enclosing a set of k points can be done in time O(k), the computation
of the whole Čech filtration quickly becomes intractable in practice. Given
α > 0, the computation of the k-skeleton of Čech(P, α) can be done by
first computing all the cliques of at most (k + 1) vertices of the 1-skeleton
of Čech(P, α) which is a graph, and second by selecting the cliques whose
minimum enclosing ball has its radius upper bounded by α.

A simplicial complex which is closely related to the Čech filtration is the
Vietoris-Rips filtration, Rips(P).

Definition 1.18 (Vietoris-Rips). Given α > 0, the Vietoris-Rips complex
with vertex set P and parameter α is characterized by

[x0, . . . , xk] ∈ Rips(P, α) ⇔ ∥xi − xj∥ ⩽ α for all i, j ∈ {0, . . . , k}.
As α goes from 0 to∞, the nested sequence of complexes Rips(P, α) defines
the Vietoris-Rips complex filtration.

The Vietoris-Rips complex is much simpler to compute than the Čech
filtration as it just involves distance comparisons. The Vietoris-Rips complex
is the largest simplicial complex that has the same 1-skeleton as the Čech
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complex. It is thus completely characterized by its 1-skeleton. The whole
k-dimensional skeleton of the Vietoris-Rips filtration can be computed by
computing the diameter of all the subsets of at most k points of P.

The Čech and the Vietoris-Rips filtrations are related by the following
interleaving property that plays a fundamental role in homology inference.

Lemma 1.19. Let P be a finite set of points in Rd. for any α ⩾ 0

Rips(P, α) ⊂ Čech(P, α) ⊂ Rips(P, 2α).

Proof. If σ = [x0, . . . , xk] ∈ Rips(P, α), then x0 ∈ ∩ki=0B(xi, α). So, σ ∈
Čech(P, α), which proves the first inclusion.

Now, if σ = [x0, . . . , xk] ∈ Čech(P, α), there exists y ∈ Rd such that
y ∈ ∩ki=0B(xi, α). As a consequence, for all i, j ∈ {0, . . . , k}, ∥xi − xj∥ ⩽
∥xi − y∥ + ∥y − xj∥ ⩽ 2α and σ ∈ Rips(P, 2α), which proves the second
inclusion. □

2. Simplicial Homology

In this section we introduce the basic notions of simplicial homology.
To avoid minor technical discussions about the orientation of simplices, we
restrict to the homology with coefficients in the finite field Z/2Z = {0, 1}.
As above, K denotes a finite d-dimensional simplicial complex.

2.1. The Space of k-chains. For any non negative integer k, the space of
k-chains is the vector space of all the formal sums (with coefficient in Z/2Z)
of k-dimensional simplices of K. More precisely, if {σ1, . . . , σp} is the set of
k-simplices of K any k-chain c can be uniquely written

c =
∑p

i=1 εiσi, with εi ∈ Z/2Z.
If c′ =

∑p
i=1 ε

′
iσi, is another k-chain, the sum of two k-chains and the product

of a chain by a scalar are defined by

c+ c′ =
∑p

i=1(εi + ε′i)σi, and λ.c =
∑p

i=1(λεi)σi,

where the sums εi + ε′i and λεi are modulo 2.

Definition 2.1 (Space of k-chains). The space of k-chains of K is the set
Ck(K) of the simplicial k-chains of K with the two operations defined above.
This is a Z/2Z-vector space whose zero element is the empty chain 0 =∑p

i=1 0.σi.

Notice that the set of k-simplices of K is a basis of Ck(K).

Example 2.2. or the simplicial complex K of Figure 4, C1(K) is the Z/2Z-
vector space generated by the edges e1 = [a, b], e2 = [b, c], e3 = [c, a] and
e4 = [c, d]; i.e.

C1(K) = spanZ/2Z(e1, e2, e3, e4)

= {0, e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e3 + e4,

e1 + e2 + e3, e1 + e2 + e4, e1 + e3 + e4, e2 + e3 + e4} .

Summing e1 + e2 with e2 + e3 + e4 gives e1 + e3 + e4. One may describe
C0(K) and C2(K) in a similar way.
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a

b c

d

Figure 4. The simplicial complex of Example 2.2, made of
four vertices, four edges and one triangle.

Chains with coefficient in Z/2Z have an obvious geometric interpretation:
since any k-chain can be uniquely written as c = σi1 + . . .+ σim where the
σij ’s are k-simplices, c can be considered as the union of the simplices σij .
The sum of two k-chains is equal to their symmetric difference.

2.2. The Boundary Operator and Homology Groups.

Definition 2.3 (Boundary of a Simplex). The boundary ∂(σ) of a k-simplex
σ is the sum of its (k − 1)-faces. This is a (k − 1)-chain.

If σ = [v0, . . . , vk] is a k-simplex, then

∂(σ) =
k∑

i=0

[v0, . . . , v̂i, . . . , vk],

where [v0, . . . , v̂i, . . . , vk] is the (k− 1)-simplex spanned by the set of all the
vertices of σ except vi.

Remark 2.4. In the general case where the coefficient of the chains are
taken in another field than Z/2Z it is important to take into account the
ordering of the vertices in σ and the boundary of σ has to be defined as

∂(σ) =
∑k

i=0(−1)i[v0, . . . , v̂i, . . . , vk].

The boundary operator, defined on the simplices of K, extends linearly
to Ck(K).

Definition 2.5 (Boundary Operator). The boundary operator is the linear
map defined by

∂ : Ck(K)→ Ck−1(K)

c 7→ ∂(c) =
∑
σ∈c

∂(σ).

Notice that one should denote ∂k the above defined operator but to avoid
heavy notations one usually omits the index in the notations.

Proposition 2.6. The boundary of the boundary of a chain is always zero:

∂∂ = ∂ ◦ ∂ = 0.

Proof. Since the boundary operator is linear, it is sufficient to check the
property for a simplex. Let σ = [v0, . . . , vk] be a k-simplex.
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∂∂(σ) = ∂

(
k∑

i=0

[v0, . . . , v̂i, . . . , vk]

)

=
k∑

i=0

∂([v0, . . . , v̂i, . . . , vk])

=
∑
j<i

[v0, . . . , v̂j , . . . , v̂i, . . . , vk] +
∑
j>i

[v0, . . . , v̂i, . . . , v̂j , . . . , vk]

= 0. □

The boundary operator defines a sequence of linear maps between the
spaces of chains.

Definition 2.7 (Chain Complex). The chain complex associated to a com-
plex K of dimension d is the following sequence of linear operators

{0} ∂−→ Cd(K) ∂−→ . . .
∂−→ Ck+1(K) ∂−→ Ck(K) ∂−→ Ck−1(K) ∂−→ . . .

∂−→ C0(K) ∂−→ {0}.

For k ∈ {0, . . . , d}, the set Zk(K) of k-cycles of K is the kernel of ∂ :
Ck → Ck−1:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck(K)|∂c = 0}.

The image Bk(K) of ∂ : Ck+1 → Ck is the set k-boundaries, i.e. the k-chains
bounding a (k + 1)− chain:

Bk(K) := Im(∂ : Ck+1 → Ck) = {c ∈ Ck(K)|∃c′ ∈ Ck+1, c = ∂c′}.

Examples of chains, cycles and boundaries are given in Figure 5.

c1

c2

c3

c4

Figure 5. Some examples of chains, cycles and boundaries
on a 2-dimensional complex K: c1, c2 and c4 are 1-cycles; c3
is a 1-chain but not a 1-cycle; c4 is a 1-boundary, namely the
boundary of the 2-chain obtained as the sum of the two tri-
angles surrounded by c4; The cycles c1 and c2 span the same
element inH1(K) as their difference is the 2-chain represented
by the union of the triangles surrounded by the union of c1
and c2.
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The linear spaces Bk and Zk are subspaces of Ck, and according to Propo-
sition 2.6, one has

Bk(K) ⊂ Zk(K) ⊂ Ck(K).

Ck+1

Zk+1

Bk+1

00

Ck

Zk

Ck−1

Zk−1

Bk Bk−1

0

∂k+1 ∂k

Figure 6. A chain complex, with the property Bk(K) ⊂
Zk(K) ⊂ Ck(K) dislayed. The composition of any two con-
secutive boundary maps is the zero map.

That is, said with words, k-boundaries are k-cycles. However, not all
cycles are boundaries, with motivates the following definition.

Definition 2.8 (Homology Groups, Betti Numbers). The kth homology
group of K is the quotient linear space

Hk(K) = Zk(K)/Bk(K).

Hk(K) is a vector space and its elements are the homology classes of K.
The dimension βk(K) = dimHk(K) is called the kth Betti number of K.

The homology class of a cycle c ∈ Zk(K) is the set c+Bk(K) = {c+ b|b ∈
Bk(K)}. Two cycles c, c′ that are in the same homology class are said to be
homologous.

Figure 7. Examples of Betti numbers for simple simplicial
complexes: from left to right, an edge, the boundary of a
triangle, a triangle and the boundary of a tetrahedron.

Exercise 2.9. What are the Betti numbers of a n-simplex? Of a torus? Of
the skeleton of a tetrahedron? Of the skeleton of a cube?
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2.3. Singular Homology and Topological Invariance. The homology
groups and Betti numbers are topological invariants.

Theorem 2.10. If K and K′ are two simplicial complexes with homotopy
equivalent geometric realizations then their homology groups are isomorphic
and their Betti numbers are equal.

Proof. Beyond the scope of this course. See [Hat02, Section 2.1] for a com-
plete proof. □

Singular homology is another notion of homology that allows to consider
general spaces that are not necessarily homeomorphic to simplicial com-
plexes. The definition of singular homology is similar to the one of simplicial
homology except that it relies on the notion of singular simplex.

Let ∆k be the standard k-dimensional simplex in Rk , i.e.. the geometric
simplex spanned by the origin and the vertices xi’s, i ∈ {1, . . . , k}, whose
coordinates are all 0 except the ith one which is equal to 1. Given a topolog-
ical space X, a singular k-simplex is a continuous map σ : ∆k → X. As in
the case of simplicial homology, the space of singular k-chains is the vector
space of formal linear combinations of singular k-simplices. The boundary
∂σ of a singular k-simplex is the sum of the restriction of σ to each of the
(k − 1)-faces of ∆k. Proposition 2.6 still holds for the (singular) boundary
operator and the kth singular homology group of X is defined similarly as
the quotient of the space of cycles by the space of boundaries.

Figure 8. ∆k is the standard simplex in Rk. A singular
k-simplex in a topological space X is a continuous map σ :
∆k → X.

Some of its important properties are:

– Singular homology is defined for any topological space X.
– If X is homotopy equivalent to the geometric realization of a simplicial
complex, then the singular and simplicial homology coincide.

Another important property of singular (and thus simplicial) homology is
that continuous maps between topological spaces canonically induce homo-
morphisms between their homology groups.

Proposition 2.11 (Homology and Continuous Maps). if f : X → Y is a
continuous map and σ : ∆k → X a simplex in X, then f ◦ σ : ∆k → Y is a
simplex in Y .

As a consequence, f canonically induces linear maps between homology
groups:

f∗ : Hk(X)→ Hk(Y ).

Furthermore, if f : X → Y is an homeomorphism or an homotopy equiva-
lence then f∗ is an isomorphism.
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Proof. See [Hat02, Theorem 2.10]. □

As a consequence, two spaces that are homotopy equivalent have the same
Betti numbers. Notice that, when X is not homotopy equivalent to a finite
simplicial complex, its Betti numbers might not be finite.

3. Deterministic Betti Numbers Inference

Singular homology allows to consider Betti numbers of compact sets in
Rd and of their offsets. Using its connection to simplicial homology and
the distance functions framework of the previous chapter on reconstruction
of compact sets, we derive explicit methods to infer the Betti numbers of
compact subsets with positive weak feature size.

3.1. A First Method. Let K ⊂ Rd be a compact set with wfs(K) > 0
and let P ∈ Rd be a finite set of points such that dH(K,P) < ε for some
given ε > 0. Recall that, from Grove’s isotopy lemma, all the r-offsets Kr

of K, for 0 < r < wfs(K), are homeomorphic and thus have isomorphic
homology groups. The goal of this section is to provide an effective method
to compute the Betti numbers βk(K

r), 0 < r < wfs(K), from P.

Theorem 3.1 (Chazal, Lieutier). Let K ⊂ Rd be a compact set with wfs(K) >
0 and let P ⊂ Rd be a finite set of points such that dH(K,P) < ε for
ε > 0 such that wfs(K) > 4ε. For α > 0 such that 4ε + α < wfs(K), let
i : Pα+ε ↪→ Pα+3ε be the canonical inclusion.

Then for all integer k ⩾ 0 and 0 < r < wfs(K),

Hk(K
r) ∼= Im(i∗ : Hk(Pα+ε)→ Hk(Pα+3ε)),

where Im denotes the image of the homomorphism and ∼= means two groups
are isomorphic.

Proof. Since dH(K,P) < ε, we have the following sequence of inclusion maps

Kα ⊂ Pα+ε ⊂ Kα+2ε ⊂ Pα+3ε ⊂ Kα+4ε

that induces he following sequence of homomorphisms (the one induced by
the canonical inclusion maps) at the homology level

Hk(K
α)→ Hk(Pα+ε)→ Hk(K

α+2ε)→ Hk(Pα+3ε)→ Hk(K
α+4ε).

Since wfs(K) > α+4ε, it follows from Grove’s isotopy lemma that the homo-
morphisms U : Hk(K

α) → Hk(K
α+2ε) and V : Hk(K

α+2ε) → Hk(K
α+3ε)

induced by the inclusions maps are indeed isomorphisms, so that we display
the following diagram

Hk(K
α)

A

""

U // Hk(K
α+2ε)

C

$$

V // Hk(K
α+4ε)

Hk(Pα+ε)
i∗ //

B
;;

Hk(Pα+3ε)

D
::

It follows from elementary linear algebra that the rank of i∗ : Hk(Pα+ε)→
Hk(Pα+3ε) is equal to the rank of these isomorphisms which is equal to
βk(K

α).
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(a) The offset Pα+ε, with generators of H1(Pα+ε).

(b) The offset Pα+3ε, with generators of H1(Pα+3ε).

(c) The generators of H1(Pα+ε) when seen in H1(Pα+3ε): the two small 1-cycles of
Z1(Pα+ε) on the left are sent to zero inH1(Pα+3ε), since they belong to B1(Pα+3ε).
Hence, Im(i∗ : H1(Pα+ε)→ H1(Pα+3ε)), has dimension equal to 1.

Figure 9. The idea behind Theorem 3.1 is the following:
both Pα+ε and Pα+3ε, taken individually, may contain topo-
logical artifacts due to sampling. However, in c we observe
that most of these homological features do not survive the
transition. All the extra connected components in a are
merged into the large component in b. Similarly, all the
extra cycles in a are filled up in b.
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Indeed, as U = B ◦ A and V = D ◦ C are isomorphisms, we get that A
and C are injective, and that B and D are surjective. As a result, noticing
that i∗ ◦A = C ◦ U , we obtain

rank(i∗) = rank(i∗ ◦A) = rank(C ◦ U) = rank(U) = βk(K
α),

which concludes the proof. □

3.2. Using Simplicial Complexes. Theorem 3.1 shows that the Betti
numbers of the offsets of K can be deduced from the offsets of P. How-
ever, the direct computation of the homology groups of a union of balls,
which is a continuous object and not a finite simplicial complex, is not ob-
vious. To overcome this issue, recall that the Nerve Theorem 1.14 implies
that for any r ⩾ 0, Pr is homotopy equivalent to Čech(P, r). As a conse-
quence Hk(Pr) and Hk(Čech(P, r)) are isomorphic. Moreover, one can show
that the isomorphisms can be chosen to commute with the ones induced by
inclusions maps, making the following diagram commutative

Hk(Pr) // Hk(Pr′)

Hk(Čech(P, r))

∼ =

OO

// Hk(Čech(P, r′))

∼ =
OO

We immediately obtain the following result.

Theorem 3.2 (Chazal, Oudot). Assume that dH(K,P) < ε and wfs(K) >
4ε. For α > 0 such that 4ε + α < wfs(K), let i : Čech(P, α + ε) ↪→
Čech(P, α+ 3ε) be the canonical inclusion.

Then for all integer k ⩾ 0 and 0 < r < wfs(K),

Hk(K
r) ∼= Im(i∗ : Hk(Čech(P, α+ ε))→ Hk(Čech(P, α+ 3ε)).

Thanks to the previous proposition, inferring the Betti numbers ofKr now
boils down to homology computation on finite Čech complexes. However,
as already noticed in Section 1.5, computing Čech complexes require to
determine if finite sets of balls intersect, which quickly becomes prohibitive
as d and the cardinality of P increase. Using the interleaving property
between Čech and Vietoris-Rips filtrations established in Lemma 1.19, we
obtain the following theorem.

Theorem 3.3 (Chazal, Oudot). Assume that dH(K,P) < ε and wfs(K) >
9ε. For all 2ε < α < 1

4(wfs(K)− ε) and all 0 < r < wfs(K), we have

βk(K
r) = rank (i∗ : Hk(Rips(P, α))→ Hk(Rips(P, 4α)) ,

where i : Rips(P, α) ↪→ Rips(P, 4α) denotes the canonical inclusion.

Proof. From Lemma 1.19 we have the sequence of inclusions:

Čech(P, α/2) ↪→ Rips(P, α) ↪→ Čech(P, α)

↪→

Čech(P, 4α) ←↩ Rips(P, 4α) ←↩ Čech(P, 2α)
Since α ⩾ 2ε, Theorem 3.2 implies that in the sequence of induced ho-
momorphisms at the homology level, Hk(Čech(P, α/2) → Hk(Čech(P, 4α)
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and Hk(Čech(P, α)→ Hk(Čech(P, 2α) have ranks equal to βk(K
r). Hence,

rank (i∗) is also equal to βk(K
r), which concludes the proof.

□

4. Rates of Convergence for Random Point Clouds

4.1. Minimax Upper Bound. In the smooth case where K has positive
reach (µ = 0), one can actually prove that K is homotopy equivalent to its
offsets, for small enough radii, as stated in the following lemma.

Lemma 4.1. Let M ⊂ Rd be a k-dimensional compact submanifold with
positive reach reach(M) ⩾ τ > 0.
Then for all r ∈ (0, τ), M is homotopy equivalent to M r.

Proof. Consider f = πM : M r → M the projection map onto M . f is
well defined, since M r ⊂ Med(M)c. Write g = idM , so that f ◦ g = idM .
Let us show that g ◦ f = f is homotopy equivalent to idMr by considering
f(x, t) = tπM (x) + (1 − t)x. f is continuous, and f : M r → M r, since for
all x ∈M r,

dM (f(x, t)) ⩽ ∥f(x, t)− πM (x)∥ = (1− t) ∥x− πM (x)∥ ⩽ r.

□

Corollary 4.2 (Homology Inference under Reach Condition). Let M ⊂ Rd

be a k-dimensional compact submanifold with reach(M) ⩾ τ > 0. Assume
that τ > 9ε. Then for all integer ℓ ⩾ 0 and 2ε < α < 1

4(τ − ε), we have

βℓ(M) = rank (i∗ : Hℓ(Rips(P, α))→ Hℓ(Rips(P, 4α)) ,

where i : Rips(P, α) ↪→ Rips(P, 4α) denotes the canonical inclusion.

Proof. Combine Theorem 3.3 with Lemma 4.1 and use wfs(M) ⩾ reach(M).
□

Definition 4.3 (Statistical Model). We let Qk,τ,a denote the set of Borel

probability distributions Q on Rd such that

– M = suppQ is a k-dimensional submanifold with reach(M) ⩾ τ > 0.
– Q is (a, k)-standard at scale r0 ⩾ τ/40.

The following result provides a convergence rate for inference of homology
groups from random point clouds.

Proposition 4.4 (Homology Inference under Reach Condition). Let Xn =
{X1, . . . , Xn} be a i.i.d. n-sample of some Q ∈ Qk,τ,a. For all integer ℓ ⩾ 0
write

β̂ℓ = rank (i∗ : Hℓ(Rips(Xn, α0))→ Hℓ(Rips(Xn, 4α0)) ,

where α0 = τ/5 and i : Rips(P, α0) ↪→ Rips(P, 4α0) denotes the canonical
inclusion.
Then for n large enough,

PQ

(
∃ℓ ⩾ 0 such that βℓ(M) ̸= β̂ℓ

)
⩽

4k

a′τk
exp

(
−na′τk

)
,

where a′ = a/20k.
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Remark 4.5. This bound only depends on a, k and τ .

Proof. From Proposition 6.4 of previous lesson and Corollary 4.2, denoting
ε = dH(M,Xn), we have

PQ

(
∃ℓ ⩾ 0 such that βℓ(M) ̸= β̂ℓ

)
⩽ PQ

(
9ε ⩾ τ or 2ε ⩾ α0 or α0 ⩾

1

4
(τ − ε)

)
⩽ PQ (dH(M,Xn) > τ/20)

⩽
4k

a′τk
exp

(
−na′τk

)
,

where a′ = a/20k. □

Definition 4.6 (Minimax Risk for Homology Inference). We let

Rn

(
Qk,τ,a

)
= inf

β̂
sup

Q∈Qk,τ,a

PQ

(
∃ℓ ⩾ 0 such that βℓ(M) ̸= β̂ℓ

)
,

where β̂ : (Rd)n → NN ranges among all the estimators β̂ = β̂(X1, . . . , Xn)
based on n-samples.

Corollary 4.7. For all n ⩾ 1,

Rn(Qk,τ,a

)
⩽

4k

a′τk
exp

(
−na′τk

)
,

where a′ = a/20k.

Proof. Follows straightforwardly from Proposition 4.4. □

4.2. Minimax Lower Bound.

Definition 4.8 (Total Variation). Given two probability distributions Q,Q′

on a measurable space (X ,A), the total variation between them is

TV(Q,Q′) = sup
A∈A

∣∣Q(A)−Q′(A)
∣∣ .

TV is a distance on the space of probability measures on (X ,A), and

TV(Q,Q′) =
1

2

∫
X
|q − q′|dν = 1−

∫
X
q ∧ q′dν,

where ν is any measure dominating Q and Q′, and q = dQ/dν, q′ = dQ′/dν.

Remark 4.9. The notation
∫
X |dQ − dQ′| :=

∫
X |q − q′|dν is often used

to emphasize that this quantity does not depend on the chosen dominating
measure ν.

Proof. TV clearly is well defined, separated, symmetric, and satisfies triangle
inequality. Furthermore, taking A0 = {q ⩾ q′} yields

0 =

∫
X
(q − q′)dν =

∫
A0

(q − q′)dν −
∫
Ac

0

(q′ − q)dν,
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so that ∫
X
|q − q′|dν =

∫
A0

(q − q′)dν +

∫
Ac

0

(q′ − q)dν

= 2

∫
A0

(q − q′)dν.

As a consequence,

TV(Q,Q′) ⩾ Q(A0)−Q′(A0) =
1

2

∫
X
|q − q′|dν.

On the other hand, for all A ∈ A,

|Q(A)−Q′(A)| =

∣∣∣∣∣
∫
A∩A0

(q − q′)dν +

∫
A∩Ac

0

(q − q′)dν

∣∣∣∣∣
⩽ max

{∫
A∩A0

(q − q′)dν,

∫
A∩Ac

0

(q′ − q)dν

}

=
1

2

∫
X
|q − q′|dν.

The last claim follows from the identity |q − q′| = q + q′ − 2q ∧ q′. □

Lemma 4.10 (Le Cam). Let Q be a set of probability distributions, and
θ : Q → Θ be a parameter of interest, where (Θ, ρ) is a metric space.
Then for all Q,Q′ ∈ Q,

inf
θ̂

sup
Q∈Q

EQnρ
(
θ(Q), θ̂n

)
⩾

1

2
ρ
(
θ(Q), θ(Q′)

) (
1− TV(Q,Q′)

)n
,

where θ̂n = θ̂n(X1, . . . , Xn) ranges among all the measurable maps θ̂n :
X n → Θ based on an i.i.d. n-sample.

Proof. Let ν be a measure that dominates both Q and Q′, with associated
densities q, q′. For all measurable θ̂n : X n → Θ,

sup
Q∈Q

EQnρ
(
θ(Q), θ̂n

)
⩾

1

2

(
EQnρ

(
θ(Q), θ̂n

)
+ EQ′nρ

(
θ(Q′), θ̂n

))
=

1

2

∫
Xn

(
ρ
(
θ(Q), θ̂n

)
q⊗n + ρ

(
θ(Q′), θ̂n

)
q′⊗n

)
dν⊗n

⩾
1

2

∫
Xn

(
ρ
(
θ(Q), θ̂n

)
+ ρ
(
θ(Q′), θ̂n

))
q⊗n ∧ q′⊗ndν⊗n

⩾
1

2
ρ
(
θ(Q), θ(Q′)

) n∏
i=1

∫
X
q(xi) ∧ q′(xi)dν(xi)

=
1

2
ρ
(
θ(Q), θ(Q′)

) (
1− TV(Q,Q′)

)n
.

□

Proposition 4.11. If k < d and τ ⩽ 1, then for a > 0 small enough,

Rn(Qk,τ,a

)
⩾

1

2
exp
(
−n
)
,

for some C > 0.
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M

M ′

2τ
τ

R

Proof. We apply Le Cam’s lemma with Q = Qk,τ,a, Θ = NN and ρ(β, β′) =

1β=β′ . We let M = Sk(0, R) denote the centered k-dimensional sphere

with radius R ⩾ τ , and M ′ = M ∪ Sk(τ), where Sk(τ) is at distance at
least 2τ from M . Write Q and Q′ for the uniform distributions on M and
M ′ respectively. Q and Q′ are dominated by the k-dimensional Hausdorff
measure ν = Hk. Denoting σk for the surface area of the k-dimensional unit
sphere, the densities of Q and Q′ with respect to ν are f = 1

σkRk1Sk(0,R)

and f ′ = 1
σk(Rk+τk)

(
1Sk(0,R) + 1Sk(τ)

)
respectively. Hence,

2TV(Q,Q′) =

∫
Rd

|f − f ′|dν

=

∫
S(0,R)

∣∣∣∣ 1

σkRk
− 1

σk(Rk + τk)

∣∣∣∣ dHk +

∫
S(τ)

1

σk(Rk + τk)
dHk

=

∣∣∣∣ 1

σkRk
− 1

σk(Rk + τk)

∣∣∣∣σkRk +
1

σk(Rk + τk)
σkτ

k

=
2τk

Rk + τk
.

Clearly, β0(M) = 1 ̸= 2 = β0(M
′). Furthermore, M and M ′ are k-

dimensional submanifolds with reach at least τ , and if a > 0 is small enough,
Q,Q′ are (a, k)-standard. From Le Cam’s Lemma 4.10,

Rn(Qk,τ,a

)
⩾

1

2

(
1− τk

Rk + τk

)n

⩾
1

2
exp

(
− 2nτk

Rk + τk

)
,

where we used that 1− t ⩾ exp(−2t) whenever 0 ⩽ t ⩽ 1/2. The result then
follows by taking R = τ . □

5. Further Sources

These notes mainly follow [BCY18] and [NSW08].
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